Цифровые ядра с различным содержанием минералов. а) режим цифрового ядра. b) кварц. c) глина. d) полевой шпат. Фото: © pstu.ru

Сланцевый газ — это природный газ, который находится не в свободных подземных пустотах, как в обычных месторождениях, а глубоко внутри особо плотных горных пород — сланцев. Его трудно добывать без специальных технологий. Чтобы его извлечь, в пласте искусственно создают дополнительные трещины, используя технологию гидроразрыва.

Однако сланцевые породы отличаются сложной и непредсказуемой структурой, сильной слоистостью и хрупкостью. Поэтому важно заранее изучить, как материал поведет себя во время такой операции, и в каких именно зонах ее проведение будет наиболее эффективно. Ученые Пермского Политеха и Китайского университета нефти и газа предложили новый метод, позволяющий виртуально исследовать сланец на компьютере без дорогих лабораторных испытаний. Способ позволяет на микроуровне изучить структуру минерала и с точностью до 90% предсказать, какие места лучше всего подходят для создания трещин. Это повысит успешность технологии гидроразрыва, минимизирует риски обрушений, снизит затраты и увеличит уровень добычи газа.

Статья с результатами опубликована в журнале «Society of Petroleum Engineers», 2025. Исследование выполнено при поддержке Национального фонда естественных наук Китая (№ 52374027) и Правительства Пермского края (№ СЭД-26−08−08−32).

Сланцевый газ состоит преимущественно из метана и используется как альтернатива традиционному газу: в качестве химического сырья для производства пластмассы, удобрений, смол и других продуктов, для отопления домов и как топливо в автомобилях и электроэнергетике. Его запасы в мире велики и во многих отраслях промышленности он способен заменить уголь, тем самым снизив выбросы углекислого газа в атмосферу.

Однако из-за тектонических особенностей породы, плотности и разнородного минерального состава добывать газ из сланцевых пород сложнее, чем из песчаников, карбонатных или угольных пластов. Особенно с больших глубин (более 3,5 километров). Поэтому, чтобы повысить эффективность гидроразрыва в таких условиях, важно заранее определить, в каких зонах выгоднее создавать дополнительные трещины. Без точного прогноза легко ошибиться с выбором места, что может вызвать обрушение пласта, утечку газа в атмосферу и пустую трату многомиллионных вложений на выполнение операции.

Обычно для этого проводят лабораторные испытания керна — образцов, извлеченных из скважин. Они помогают изучить механические свойства породы и понять, как она может деформироваться при гидроразрыве пласта. Однако для экспериментов требуется большое количество подобных образцов, а их добыча в глубокозалегающих пластах — это трудоемкий и дорогостоящий процесс. Также лабораторный анализ не учитывает неоднородность сланцев — их слоистость, пористую структуру и сложный минеральный состав, что может неправильно сказаться на результатах анализа.

Современные технические возможности позволяют с высокой точностью быстро и дешево воспроизводить горные породы с различными характеристиками в цифровом виде. А также многократно проводить виртуальные эксперименты и моделировать их деформацию в различных условиях.

Ученые Пермского Политеха совместно с коллегами из Китая разработали метод, который на основе детализированных трехмерных цифровых моделей керна позволяет спрогнозировать успешность гидроразрыва пласта в глубоких слоях сланцевых месторождений.

«Путем сканирования горной породы компьютерной томографией и обработки снимков электронной микроскопией мы создали настоящий трехмерный цифровой двойник керна, с помощью которого узнали точную структурную информацию о породе — пористость, микротрещины и минеральный состав сланца, включающий глину, кварц, полевой шпат и пирит. Сравнение с реальными образцами доказало правильность созданного 3D-образца. Погрешность составила всего 3−9%", — рассказывает Владимир Поплыгин, директор Когалымского филиала ПНИПУ, кандидат технических наук.

Далее эксперты смоделировали проведение гидроразрыва и рассчитали, как именно трехмерная модель керна деформируется под нагрузкой и какие параметры на это влияют. Результаты показали, что чувствительность сланцевой породы к повышению трещиноватости зависит от угла падения трещины и пласта, их плотности, твердости, длины, хрупкости минералов в составе, а также возникающих напряжений в процессе.

На основе полученных данных ученые разработали комплексную модель для оценки проницаемости глубоких сланцевых резервуаров, которая учитывает все эти факторы и позволяет предсказать зоны, где проведение гидроразрыва пройдет наиболее эффективно.

«Правильность прогнозирования модели мы оценили на практике в условиях сланцевого газового месторождения в Китае. На основе результатов модели был разработан подходящий сценарий операции и проведен гидроразрыв на двух участках разной глубины (3580−3640 и 3660−3730 метров). В первой зоне начальная добыча газа оказалась высокая, но коэффициент извлечения низкий. Напротив, для второй зоны характерны высокая начальная добыча и высокий коэффициент извлечения. Наша разработка достаточно точно предсказала эти различия, что подтверждает достоверность моделирования трещиноватости с помощью цифровой технологии», — поделился Владимир Поплыгин.

По словам исследователей в России такая разработка может быть полезна при добыче углеводородов из Баженовской Доманиковой свит на Урале и в Западной Сибири — комплексы нефтематеринских пород, которые характеризуются низкой проницаемостью пластов.

Методика ученых Пермского Политеха и Китайского университета позволяет повысить уровень добычи газа на основе реальных данных без дорогостоящих лабораторных исследований. Модель, предсказывающая успешность гидроразрыва пласта, повысит его эффективность, а также сократит время и затраты на подготовку и проведение операции.


К следующей новости